Electroporation by nucleofector is the best nonviral transfection technique in human endothelial and smooth muscle cells

Authors:
Iversen N, Birkenes B, Torsdalen K and Djurovic S
In:
Source: Genet Vaccines Ther
Publication Date: (2005)
Issue: 3(1): 2
Research Area:
Cardiovascular
Cells used in publication:
SMC, aortic (AoSMC), human
Species: human
Tissue Origin: aortic
Endothelial, coronary art, human (HCAEC)
Species: human
Tissue Origin: artery
SMC, coronary artery, human (CASMC)
Species: human
Tissue Origin: artery
Endothelial, aortic, human (HAEC)
Species: human
Tissue Origin: aortic
Platform:
Nucleofector® I/II/2b
Experiment
RESULTS: Electroporation via the nucleofector machine was the most effective method tested. It exhibited a 10 to 20 fold (for SMC and EC, respectively) increase in transfection efficiency in comparison to the lipofection method combined with acceptable toxicity. FuGene 6 and Lipofectamine PLUS were the preferred transfection reagents tested and resulted in 2 to 60 fold higher transfection efficiency in comparison to the PCI which was the least effective method. CONCLUSION: This study indicates that electroporation via the nucleofector machine is the preferred non-viral method for in vitro transfection of both human aortic and coronary artery SMC and EC. It may be very useful in gene expression studies in the field of vascular biology. Through improved gene transfer, non-viral transfer techniques may also play an increasingly important role in delivering genes to SMC and EC in relevant disease states.
Abstract
BACKGROUND: The aim of this study was to determine the optimal non-viral transfection method for use in human smooth muscle cells (SMC) and endothelial cells (EC). METHODS: Coronary Artery (CoA) and Aortic (Ao) SMC and EC were transfected with a reporter plasmid, encoding chloramphenicol acetyltransferase type 1 (CAT), with seven different transfection reagents, two electroporation methods and a photochemical internalization (PCI) method. CAT determination provided information regarding transfection efficiency and total protein measurement was used to reflect the toxicity of each method. RESULTS: Electroporation via the nucleofector machine was the most effective method tested. It exhibited a 10 to 20 fold (for SMC and EC, respectively) increase in transfection efficiency in comparison to the lipofection method combined with acceptable toxicity. FuGene 6 and Lipofectamine PLUS were the preferred transfection reagents tested and resulted in 2 to 60 fold higher transfection efficiency in comparison to the PCI which was the least effective method. CONCLUSION: This study indicates that electroporation via the nucleofector machine is the preferred non-viral method for in vitro transfection of both human aortic and coronary artery SMC and EC. It may be very useful in gene expression studies in the field of vascular biology. Through improved gene transfer, non-viral transfer techniques may also play an increasingly important role in delivering genes to SMC and EC in relevant disease states