Nucleofection of primary neurons

Authors:
Gartner A, Collin L, Lalli G
In:
Source: Methods Enzymol
Publication Date: (2006)
Issue: 406: 374-88
Research Area:
Neurobiology
Cells used in publication:
Neuron, hippo/cortical, rat
Species: rat
Tissue Origin: brain
Granule cell (CGC), rat
Species: rat
Tissue Origin: brain
Neuron, mesencephalic, rat
Species: rat
Tissue Origin: brain
Neuron, hippocampal, rat
Species: rat
Tissue Origin: brain
Platform:
Nucleofector® I/II/2b
Abstract
Efficient gene transfer is an important tool for the study of neuronal function and biology. This has proved difficult and inefficient with traditional transfection strategies, which can also be fairly toxic, whereas viral-mediated gene transfer, although highly efficient, is often time-consuming. The recently developed Amaxa Nucleofector technology, based on electroporation with preset parameters in a cell-type-specific solution, enables direct delivery of DNA, small interfering (si)RNA oligonucleotides and siRNA vectors into the cell nucleus. This strategy results in reproducible, rapid, and efficient transfection of a broad range of cells, including primary neurons. Nucleofected neurons survive for up to 3 weeks and remain functional. We are currently using this transfection method to examine the contribution of Rho GTPase signaling pathways in the establishment of neuronal polarity, neuronal migration, and neurite outgrowth. Here, we describe three protocols to efficiently nucleofect rat cerebellar granule, cortical, and hippocampal neurons.