MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1.

Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G, Lauro R, Federici M.
Source: Circulation
Publication Date: (2009)
Issue: 120(15): 1524-32
Research Area:
Basic Research
Cells used in publication:
Endothelial, umbilical vein, human (HUVEC)
Species: human
Tissue Origin: vein
Endothelial, coronary art, human (HCAEC)
Species: human
Tissue Origin: artery
Endothelial, aortic, human (HAEC)
Species: human
Tissue Origin: aortic
Aging is a major risk factor for the development of atherosclerosis and coronary artery disease. Through a microarray approach, we have identified a microRNA (miR-217) that is progressively expressed in endothelial cells with aging. miR-217 regulates the expression of silent information regulator 1 (SirT1), a major regulator of longevity and metabolic disorders that is progressively reduced in multiple tissues during aging. METHODS AND RESULTS: miR-217 inhibits SirT1 expression through a miR-217-binding site within the 3'-UTR of SirT1. In young human umbilical vein endothelial cells, human aortic endothelial cells, and human coronary artery endothelial cells, miR-217 induces a premature senescence-like phenotype and leads to an impairment in angiogenesis via inhibition of SirT1 and modulation of FoxO1 (forkhead box O1) and endothelial nitric oxide synthase acetylation. Conversely, inhibition of miR-217 in old endothelial cells ultimately reduces senescence and increases angiogenic activity via an increase in SirT1. miR-217 is expressed in human atherosclerotic lesions and is negatively correlated with SirT1 expression and with FoxO1 acetylation status. CONCLUSIONS: Our data pinpoint miR-217 as an endogenous inhibitor of SirT1, which promotes endothelial senescence and is potentially amenable to therapeutic manipulation for prevention of endothelial dysfunction in metabolic disorders.