The oncoprotein SF2/ASF promotes non-small cell lung cancer survival by enhancing survivin expression.

Authors:
Ezponda T, Pajares MJ, Agorreta J, Echeveste JI, López-Picazo JM, Torre W, Pio R, Montuenga LM.
In:
Source: Clin Cancer Res
Publication Date: (2010)
Issue: 16(16): 4113-25
Research Area:
Cancer Research/Cell Biology
Basic Research
Cells used in publication:
Epithelial, bronchial (NHBE), human
Species: human
Tissue Origin: lung
Epithelial, Small Airway, human (SAEC)
Species: human
Tissue Origin: lung
Experiment


Abstract

PURPOSE: SF2/ASF is a splicing factor recently described as an oncoprotein. In the present work, we examined the role of SF2/ASF in human non-small cell lung cancer (NSCLC) and analyzed the molecular mechanisms involved in SF2/ASF-related carcinogenesis. EXPERIMENTAL DESIGN: SF2/ASF protein levels were analyzed in 81 NSCLC patients by immunohistochemistry. SF2/ASF downregulation cellular models were generated using small interfering RNAs, and the effects on proliferation and apoptosis were evaluated. Survivin and SF2/ASF expression in lung tumors was analyzed by Western blot and immunohistochemistry. Survival curves and log-rank test were used to identify the association between the expression of the proteins and time to progression. RESULTS: Overexpression of SF2/ASF was found in most human primary NSCLC tumors. In vitro downregulation of SF2/ASF induced apoptosis in NSCLC cell lines. This effect was associated with a reduction in the expression of survivin, an antiapoptotic protein widely upregulated in cancer. In fact, SF2/ASF specifically bound survivin mRNA and enhanced its translation, via a mammalian target of rapamycin complex 1 (mTORC1) pathway-dependent mechanism, through the phosphorylation and inactivation of the translational repressor 4E-BP1. Moreover, SF2/ASF promoted the stability of survivin mRNA. A strong correlation was observed between the expression of SF2/ASF and survivin in tumor biopsies from NSCLC patients, supporting the concept that survivin expression levels are controlled by SF2/ASF. Furthermore, combined expression of these proteins was associated with prognosis. CONCLUSION: This study provides novel data on the mTORC1- and survivin-dependent mechanisms of SF2/ASF-related carcinogenic potential, and shows that SF2/ASF and survivin expression is involved in NSCLC progression.