Bone morphogenetic protein-2 induces proinflammatory endothelial phenotype

Csiszar A, Ahmad M, Smith KE, Labinskyy N, Gao Q, Kaley G, Edwards JG, Wolin MS and Ungvari Z
Source: Am J Pathol
Publication Date: (2006)
Issue: 168(2): 629-638
Research Area:
Cells used in publication:
Endothelial, coronary art, human (HCAEC)
Species: human
Tissue Origin: artery
Nucleofectorâ„¢ I/II/2b
The transforming growth factor-beta superfamily member bone morphogenetic protein-2 (BMP-2) is up-regulated in atherosclerotic arteries; however, its effects on the endothelium are not well characterized. Using microdissected coronary arterial endothelial cells (CAECs) and cultured primary CAECs, we demonstrated endothelial mRNA expression of BMP-2 and BMP-4. The proinflammatory cytokine tumor necrosis factor-alpha and H(2)O(2) significantly increased endothelial expression of BMP-2 but not BMP-4. In organ culture, BMP-2 substantially decreased relaxation of rat carotid arteries to acetylcholine and increased production of reactive oxygen species, events inhibited by pharmacologically blocking protein kinase C (PKC) or NAD(P)H oxidase. BMP-2 activated nuclear factor-kappaBeta in CAECs, and BMP-2 and BMP-4 substantially increased adhesion of monocytic THP-1 cells, which was reduced by pharmacologically inhibiting p42/44 MAP kinase pathway (also by siRNA down-regulating ERK-1/2) or PKC. Incubation of rat carotid arteries with BMP-2 ex vivo also increased adhesion of mononuclear cells to the endothelium, requiring p42/44 MAP kinase and PKC. Western blotting showed that in CAECs and carotid arteries BMP-2 elicited phosphorylation of p42/44 MAP kinase, which was reduced by blocking MAP kinase kinase and PKC. Collectively, expression of BMP-2 is regulated by proinflammatory stimuli, and increased levels of BMP-2 induce endothelial dysfunction, oxidative stress, and endothelial activation. Thus, the proinflammatory effects of BMP-2 may play a role in vascular pathophysiology.