Divergent expression and function of glucocorticoid receptor in human monocytes and T cells

Authors:
Li LB, Leung DY, Hall CF and Goleva E
In:
Source: J Leukoc Biol
Publication Date: (2006)
Issue: 79(4): 818-27
Research Area:
Immunotherapy / Hematology
Cells used in publication:
Monocyte, human
Species: human
Tissue Origin: blood
Platform:
Nucleofector® I/II/2b
Abstract
Glucocorticoid (GC) insensitivity is a significant problem in the treatment of immune-mediated diseases. The current study examined whether T cells and monocytes differed in their response to GC and the potential molecular basis for their variation in response to steroids. Functional studies revealed that dexamethasone (DEX) inhibited phorbol 12-myristate 13-acetate/ionomycin-induced tumor necrosis factor alpha and interleukin-6 production to a significantly lesser extent in monocytes than T cells. In parallel, a significantly longer period of time was required for DEX to induce the steroid-responsive gene, mitogen-induced mitogen-activated protein kinase phosphatase-1, in human monocytes as compared with T cells. It is interesting that such differences were not observed between murine T cells and monocytes. GC receptor beta (GCRbeta) is a splicing variant of the classic GCR, GCRalpha, which functions as a dominant-negative inhibitor of GCRalpha in humans, not mice (as mice do not express GCRbeta mRNA as a result of a difference in the murine GCR 9b exon sequence). It was found that human monocytes had a significantly higher level of GCRbeta than T cells. Furthermore, GCRbeta was found in the cytoplasm and nucleus of monocytes, and GCRbeta was localized to the nucleus of T cells. This raised the possibility that GCRbeta in the cytoplasm could affect GCRalpha cellular shuttling in response to DEX. Indeed, we found that DEX-induced nuclear translocation of GCRalpha was decreased in monocytes as compared with T cells. Specific RNA silencing of GCRbeta in human monocytes resulted in enhanced steroid-induced GCRalpha transactivation and transrepression. Our data suggest that GCRbeta contributes to variation in the GC responses of monocytes versus T cells.