Expression of endogenous oncogenic V600EB-raf induces proliferation and developmental defects in mice and transformation of primary fibroblasts

Authors:
Mercer K, Giblett S, Green S, Lloyd D, Darocha Dias S, Plumb M, Marais R and Pritchard C
In:
Source: Cancer Res
Publication Date: (2005)
Issue: 65(24): 11493-11500
Research Area:
Cancer Research/Cell Biology
Cells used in publication:
Embryonic fibroblast, mouse (MEF) immort
Species: mouse
Tissue Origin: embryo
Platform:
Nucleofector® I/II/2b
Abstract
Mutations of the human B-RAF gene are detected in approximately 8% of cancer samples, primarily in cutaneous melanomas (70%). The most common mutation (90%) is a valine-to-glutamic acid mutation at residue 600 (V600E; formerly V599E according to previous nomenclature). Using a Cre/Lox approach, we have generated a conditional knock-in allele of (V600E)B-raf in mice. We show that widespread expression of (V600E)B-Raf cannot be tolerated in embryonic development, with embryos dying approximately 7.5 dpc. Directed expression of mutant (V600E)B-Raf to somatic tissues using the IFN-inducible Mx1-Cre mouse strain induces a proliferative disorder and bone marrow failure with evidence of nonlymphoid neoplasia of the histiocytic type leading to death within 4 weeks of age. However, expression of mutant B-Raf does not alter the proliferation profile of all somatic tissues. In primary mouse embryonic fibroblasts, expression of endogenous (V600E)B-Raf induces morphologic transformation, increased cell proliferation, and loss of contact inhibition. Thus, (V600E)B-Raf is able to induce several hallmarks of transformation in some primary mouse cells without evidence for the involvement of a cooperating oncogene or tumor suppressor gene.