Fate induction in CD8 CAR T cells through asymmetric cell division

Authors:
Lee CS, Chen S, Berry CT, Kelly AR, Herman PJ, Oh S, O'Connor RS, Payne AS, Ellebrecht CT
In:
Source: Nature
Publication Date: (2024)
Issue: :
Research Area:
Cancer Research/Cell Biology
Immunotherapy / Hematology
Gene Expression
Molecular Biology
Regenerative medicine
Drug Discovery
Cells used in publication:
T cell, human peripheral blood unstim.
Species: human
Tissue Origin: blood
NALM-6
Species: human
Tissue Origin: blood
Platform:
4D-Nucleofector® X-Unit
Experiment

To disrupt the endogenous CD19 locus in Nalm6 cells (provided by M. Milone, originally obtained from DSMZ) and to create a cell line only expressing CD19-sortase or ?d TCR-sortase, two guide RNAs targeting the human CD19 locus were obtained (IDT, sequences in Supplementary Table 2) and 5 × 10^6 Nalm6 cells were electroporated with a total of 50 pM ribonucleoprotein (consisting of Cas9 (IDT) and single-guide RNA (sgRNA)) in a total volume of 20 µl of Lonza P3 buffer (P3 primary cell 4D-Nucleofector X kit S) with a Lonza 4D-Nucleofector Core Unit (pulse protocol EO115) according to the manufacturer’s protocol. After CD19 disruption, Nalm6 cells were cultured at 0.2–1 × 106 cells per ml in standard medium for 14 days before sorting CD19 negative cells by FACS (BD Biosciences AriaII). Initial disruption efficiency was greater than 90%, which increased to more than 99% after sorting. CD19 negative Nalm6 cells were transduced with target proteins (CD3?, CD3d, CD3?, CD3e, ?d TCR-sortase or CD19 sortase) and positive cells were enriched by FACS.

Bulk and CD8 CART production

To generate naive or effector CARTs, naive and effector T cells were isolated from bulk primary human T cells and were electroporated with mRNA encoding CARs. Naive T cells were isolated either with the Naive Pan T Cell Isolation Kit (Miltenyi Biotec, catalogue no. 130-097- 095) or with a positive selection of CD62L and subsequent negative selection for CD45RA+ cells. For the latter approach, cells were stained with anti-CD62L-PE (BioLegend, DREG-56, catalogue no. 304840) and enriched with the anti-PE MultiSort kit (Miltenyi Biotec, catalogue no. 130-090-757) and LS column (Miltenyi Biotec, catalogue no. 130-042- 401), with the flowthrough reserved for the isolation of effector T cells described below. CD62L+ cells were flushed out and separated from MultiSort MicroBeads using the MultiSort Release Reagent and centrifugation. CD45RA+CD62L+ cells were subsequently isolated by negative isolation using CD45RO MicroBeads (Miltenyi Biotec, catalogue no. 130-046-001) and two columns (Miltenyi LS). To isolate effector T cells of the same donor as the naive T cells, flowthrough from the first CD62L selection was added to the column (Miltenyi LD) for negative selection of CD62L- cells. More than 95% population purity (determined by flow cytometry) was used in the presented studies. Following isolation, naive and effector cells were electroporated with 10 µg mRNA/1 × 10^7 T cells encoding the CARs using Lonza 4D-Nucleofector Core Unit (pulse code EH115) according to the manufacturer’s protocol.

To disrupt the endogenous TCR, T cells were cotransduced with lentiviral CAR constructs and pCAT003, a lentivirus transfer plasmid encoding sgRNA targeting TRAC and gift from J. Doudna (Addgene plasmid no. 171628)63. Immediately following debeading, up to 4 × 10^6 T cells were electroporated with 50 pM of Cas9 as described above with the modification of pulse code EO115. TCR- cells were negatively selected using CD3 MicroBeads (Miltenyi Biotec, catalogue no. 130-097-043) and LD column according to the manufacturer’s protocol. To genetically disrupt IKZF1, 1 × 10^6 T cells were electroporated immediately following debeading with 50 pM Cas9 and 100 nM guide RNA (IDT, Supplementary Table 2) as described above, with the modification of pulse code EH115

Abstract

Early expansion and long-term persistence predict efficacy of chimeric antigen receptor T cells (CARTs)1-7, but mechanisms governing effector versus memory CART differentiation and whether asymmetric cell division induces differential fates in human CARTs remain unclear. Here we show that target-induced proximity labelling enables isolation of first-division proximal-daughter and distal-daughter CD8 CARTs that asymmetrically distribute their surface proteome and transcriptome, resulting in divergent fates. Target-engaged CARs remain on proximal daughters, which inherit a surface proteome resembling activated-undivided CARTs, whereas the endogenous T cell receptor and CD8 enrich on distal daughters, whose surface proteome resembles resting CARTs, correlating with glycolytic and oxidative metabolism, respectively. Despite memory-precursor phenotype and in vivo longevity, distal daughters demonstrate transient potent cytolytic activity similar to proximal daughters, uncovering an effector-like state in distal daughters destined to become memory CARTs. Both partitioning of pre-existing transcripts and changes in RNA velocity contribute to asymmetry of fate-determining factors, resulting in diametrically opposed transcriptional trajectories. Independent of naive, memory or effector surface immunophenotype, proximal-daughter CARTs use core sets of transcription factors known to support proliferation and effector function. Conversely, transcription factors enriched in distal daughters restrain differentiation and promote longevity, evidenced by diminished long-term in vivo persistence and function of distal-daughter CARTs after IKZF1 disruption. These studies establish asymmetric cell division as a framework for understanding mechanisms of CART differentiation and improving therapeutic outcomes.