Automated production of gene-modified chimeric antigen receptor T cells using the Cocoon Platform

Authors:
Trainor N, Purpura KA, Middleton K, Fargo K, Hails L, Vicentini-Hogan M, McRobie C, Daniels R, Densham P, Gardin P, Fouks M, Brayer H, Malka RG, Rodin A, Ogen T, Besser MJ, Smith T, Leonard D, Bryan A.
In:
Source: Cytotherapy
Publication Date: (2023)
Issue: 12: 1349-1360
Research Area:
Cancer Research/Cell Biology
Immunotherapy / Hematology
Basic Research
Molecular Biology
Endotoxin Testing
Regenerative medicine
Culture Media:
Experiment

please see the whole protocol.

Abstract

Autologous cell-based therapeutics have gained increasing attention in recent years because of their efficacy at treating diseases with limited therapeutic options. Chimeric antigen receptor (CAR) T-cell therapy has demonstrated clinical success in hematologic oncology indications, providing critically ill patients with a potentially curative therapy. Although engineered cell therapies such as CAR T cells provide new options for patients with unmet needs, the high cost and complexity of manufacturing may hinder clinical and commercial translation. The Cocoon Platform (Lonza, Basel, Switzerland) addresses many challenges, such as high labor demand, process consistency, contamination risks and scalability, by enabling efficient, functionally closed and automated production, whether at clinical or commercial scale. This platform is customizable and easy to use and requires minimal operator interaction, thereby decreasing process variability. We present two processes that demonstrate the Cocoon Platform's capabilities. We employed different T-cell activation methods-OKT3 and CD3/CD28 Dynabeads (Thermo Fisher Scientific, Waltham, MA, USA)-to generate final cellular products that meet the critical quality attributes of a clinical autologous CAR T-cell product. This study demonstrates a manufacturing solution for addressing challenges with manual methods of production and facilitating the scale-up of autologous cell therapy.