HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide.

Authors:
Canella A, Cordero Nieves H, Sborov DW, Cascione L, Radomska HS, Smith E, Stiff A, Consiglio J, Caserta E, Rizzotto L, Zanesi N, Stefano V, Kaur B, Mo X, Byrd JC, Efebera YA, Hofmeister CC, Pichiorri F.
In:
Source: OncoTarget
Publication Date: (2015)
Issue: 6(31): 31134-50
Research Area:
Cancer Research/Cell Biology
Immunotherapy / Hematology
Gene Expression
Cells used in publication:
MM.1S
Species: human
Tissue Origin: blood
Platform:
4D-Nucleofector® X-Unit
Experiment

One million of MM.1S, U266, or L363 cells were transfected by electroporation using Nucleofector 4D system (Lonza). Specific nucleofection slolutions and programs were optimized for each cell line. Briefly, cells were resuspended in 100 µl of the nucleofector solution SF, 30 pmols of microRNA (miR-9-5p precursor), antagomiR-9, miR-16-5p, negative control miR precursor, or siRNAs (Drosha, or scramble control) were added and transferred to a cuvette. All RNA reagents were from Life Technologies. Program DS- 137 was used for MM.1S cells, program DN-100 for U266 and program DS-100 for L363. 

Abstract

Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM. Although in preclinical studies HDACi's have proven anti-myeloma activity, but in the clinic single-agent HDACi treatments have been limited due to low tolerability. Improved clinical outcomes were reported only when HDACi's were combined with other drugs. Here, we show that a novel pan-HDACi AR-42 downregulates CD44, a glycoprotein that has been associated with lenalidomide and dexamethasone resistance in myeloma both in vitro and in vivo. We also show that this CD44 downregulation is in part mediated by miR-9-5p, targeting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which directly binds to CD44 mRNA and increases its stability. Importantly, we also demonstrate that AR-42 enhances anti-myeloma activity of lenalidomide in primary MM cells isolated from lenalidomide resistant patients and in in vivo MM mouse model. Thus, our findings shed light on potential novel combinatorial therapeutic approaches modulating CD44 expression, which may help overcome lenalidomide resistance in myeloma patients.