Apoptosis Induced by the Kinase Inhibitor BAY 43-9006 in Human Leukemia Cells Involves Down-regulation of Mcl-1 through Inhibition of Translation

Authors:
Rahmani M, Maynard Davis E, Bauer C, Dent P and Grant S
In:
Source: J Biol Chem
Publication Date: (2005)
Issue: 280(42): 35217-35227
Research Area:
Cancer Research/Cell Biology
Immunotherapy / Hematology
Cells used in publication:
K-562
Species: human
Tissue Origin: blood
Platform:
Nucleofectorâ„¢ I/II/2b
Abstract
BAY 43-9006 is a kinase inhibitor that induces apoptosis in a variety of tumor cells. Here we report that treatment with BAY 43-9006 results in marked cytochrome c and AIF release into the cytosol, caspase-9, -8, -7, and -3 activation, and apoptosis in human leukemia cells (U937, Jurkat, and K562). Pronounced apoptosis was also observed in blasts from patients with acute myeloid leukemia. These events were accompanied by ERK1/2 inactivation and caspase-independent down-regulation of Mcl-1. Inducible expression of a constitutively active MEK1 construct did not prevent Mcl-1 down-regulation, suggesting that this event is not related to MEK/ERK pathway inactivation. Furthermore, BAY 43-9006 did not induce major changes in Mcl-1 mRNA levels monitored by real-time PCR or Mcl-1 promoter activity demonstrated by luciferase reporter assays, but it did enhance Mcl-1 down-regulation in actinomycin D-treated cells. Inhibition of protein synthesis by cycloheximide or proteasome function with MG132 and pulse-chase studies with [(35)S]methionine demonstrated that BAY 43-9006 did not diminish Mcl-1 protein stability, nor did it enhance Mcl-1 ubiquitination, but instead markedly attenuated Mcl-1 translation in association with the rapid and potent dephosphorylation of the eIF4E translation initiation factor. Finally, ectopic expression of Mcl-1 in leukemic cells markedly inhibited BAY 43-9006-mediated cytochrome c cytosolic release, caspase-9, -7, and -3 activation, as well as cell death, indicating that Mcl-1 operates upstream of cytochrome c release and caspase activation. Together, these findings demonstrate that BAY 43-9006 mediates cell death in human leukemia cells, at least in part, through down-regulation of Mcl-1 via inhibition of translation.