Inhibition of Phosphatidylcholine-Specific Phospholipase C Interferes with Proliferation and Survival of Tumor Initiating Cells in Squamous Cell Carcinoma

Authors:
Cecchetti S, Bortolomai I, Ferri R, Mercurio L, Canevari S, Podo F, Miotti S, Iorio E.
In:
Source: PLoS ONE
Publication Date: (2015)
Issue: 10(9): e0136120
Research Area:
Basic Research
Cells used in publication:
HaCaT
Species: human
Tissue Origin: dermal
A-431
Species: human
Tissue Origin: uterus
CaSki
Species: human
Tissue Origin:
Experiment


Abstract

PURPOSE: The role of phosphatidylcholine-specific phospholipase C (PC-PLC), the enzyme involved in cell differentiation and proliferation, has not yet been explored in tumor initiating cells (TICs). We investigated PC-PLC expression and effects of PC-PLC inhibition in two adherent (AD) squamous carcinoma cell lines (A431 and CaSki), with different proliferative and stemness potential, and in TIC-enriched floating spheres (SPH) originated from them. RESULTS: Compared with immortalized non-tumoral keratinocytes (HaCaT) A431-AD cells showed 2.5-fold higher PC-PLC activity, nuclear localization of a 66-kDa PC-PLC isoform, but a similar distribution of the enzyme on plasma membrane and in cytoplasmic compartments. Compared with A431-AD, A431-SPH cells showed about 2.8-fold lower PC-PLC protein and activity levels, but similar nuclear content. Exposure of adherent cells to the PC-PLC inhibitor D609 (48h) induced a 50% reduction of cell proliferation at doses comprised between 33 and 50 µg/ml, without inducing any relevant cytotoxic effect (cell viability 95±5%). In A431-SPH and CaSki-SPH D609 induced both cytostatic and cytotoxic effects at about 20 to 30-fold lower doses (IC50 ranging between 1.2 and 1.6 µg/ml). Furthermore, D609 treatment of A431-AD and CaSki-AD cells affected the sphere-forming efficiency, which dropped in both cells, and induced down-modulation of stem-related markers mRNA levels (Oct4, Nestin, Nanog and ALDH1 in A431; Nestin and ALDH1 in CaSki cells). CONCLUSIONS: These data suggest that the inhibition of PC-PLC activity may represent a new therapeutic approach to selectively target the most aggressive and tumor promoting sub-population of floating spheres originated from squamous cancer cells possessing different proliferative and stemness potential.