A novel regulator of angiogenesis in endothelial cells: 5-hydroxytriptamine 4 receptor

Profirovic J, Strekalova E, Urao N, Krbanjevic A, Andreeva AV, Varadarajan S, Fukai T, Hen R, Ushio-Fukai M, Voyno-Yasenetskaya TA
Source: Angiogenesis
Publication Date: (2013)
Issue: 16(1): 15-28
Research Area:
Basic Research
Cells used in publication:
Endothelial, MV lung, human (HMVEC-L)
Species: human
Tissue Origin: lung
The 5-hydroxytryptamine type 4 receptor (5-HT(4)R) regulates many physiological processes, including learning and memory, cognition, and gastrointestinal motility. Little is known about its role in angiogenesis. Using mouse hindlimb ischemia model of angiogenesis, we observed a significant reduction of limb blood flow recovery 14 days after ischemia and a decrease in density of CD31-positive vessels in adductor muscles in 5-HT(4)R(-/-) mice compared to wild type littermates. Our in vitro data indicated that 5-HT(4)R endogenously expressed in endothelial cells (ECs) may promote angiogenesis. Inhibition of the receptor with 5-HT(4)R antagonist RS 39604 reduced EC capillary tube formation in the reconstituted basement membrane. Using Boyden chamber migration assay and wound healing "scratch" assay, we demonstrated that RS 39604 treatment significantly suppressed EC migration. Transendothelial resistance measurement and immunofluorescence analysis showed that a 5-HT(4)R agonist RS 67333 led to an increase in endothelial permeability, actin stress fiber and interendothelial gap formation. Importantly, we provided the evidence that 5-HT(4)R-regulated EC migration may be mediated by Ga13 and RhoA. Our results suggest a prominent role of 5-HT(4)R in promoting angiogenesis and identify 5-HT(4)R as a potential therapeutic target for modulating angiogenesis under pathological conditions.