Evaluation of layers of the rat airway epithelial cell line RL-65 for permeability screening of inhaled drug candidates

Hutter V, Hilgendorf C, Cooper A, Zann V, Pritchard DI, Bosquillon C.
Source: Eur J Pharm Sci
Publication Date: (2012)
Issue: 47(2): 481-9
Research Area:
Basic Research
Cells used in publication:
Epithelial, bronchial (NHBE), human
Species: human
Tissue Origin: lung
A rat respiratory epithelial cell culture system for in vitro prediction of drug pulmonary absorption is currently lacking. Such a model may however enhance the understanding of interspecies differences in inhaled drug pharmacokinetics by filling the gap between human in vitro and rat in/ex vivo drug permeability screens. The rat airway epithelial cell line RL-65 was cultured on Transwell inserts for up to 21 days at an air-liquid (AL) interface and cell layers were evaluated for their suitability as a drug permeability measurement tool. These layers were found to be morphologically representative of the bronchial/bronchiolar epithelium when cultured for 8 days in a defined serum-free medium. In addition, RL-65 layers developed epithelial barrier properties with a transepithelial electrical resistance (TEER) >300 ? cm(2) and apparent (14)C-mannitol permeability (P(app)) values between 0.5-3.0 × 10(-6)cm/s; i.e., in the same range as established in vitro human bronchial epithelial absorption models. Expression of P-glycoprotein was confirmed by gene analysis and immunohistochemistry. Nevertheless, no vectorial transport of the established substrates (3)H-digoxin and Rhodamine123 was observed across the layers. Although preliminary, this study shows RL-65 cell layers have the potential to become a useful in vitro screening tool in the pre-clinical development of inhaled drug candidates.