Fragile X syndrome is a common form of cognitive deficit caused by the functional absence of fragile X mental retardation protein (FMRP), a dendritic RNA-binding protein that represses translation of specific messages. Although FMRP is phosphorylated in a group I metabotropic glutamate receptor (mGluR) activity-dependent manner following brief protein phosphatase 2A (PP2A)-mediated dephosphorylation, the kinase regulating FMRP function in neuronal protein synthesis is unclear. Here we identify ribosomal protein S6 kinase (S6K1) as a major FMRP kinase in the mouse hippocampus, finding that activity-dependent phosphorylation of FMRP by S6K1 requires signaling inputs from mammalian target of rapamycin (mTOR), ERK1/2, and PP2A. Further, the loss of hippocampal S6K1 and the subsequent absence of phospho-FMRP mimic FMRP loss in the increased expression of SAPAP3, a synapse-associated FMRP target mRNA. Together these data reveal a S6K1-PP2A signaling module regulating FMRP function and place FMRP phosphorylation in the mGluR-triggered signaling cascade required for protein-synthesis-dependent synaptic plasticity.