Administrations of peripheral blood CD34-positive cells contribute to medial collateral ligament healing via vasculogenesis.

Authors:
Tei K, Matsumoto T, Mifune Y, Ishida K, Sasaki K, Shoji T, Kubo S, Kawamoto A, Asahara T, Kurosaka M, Kuroda R
In:
Source: Stem Cells
Publication Date: (2008)
Issue: 26(3): 819-30
Research Area:
Immunotherapy / Hematology
Basic Research
Cells used in publication:
CD34+ cell, human
Species: human
Tissue Origin: blood
Mononuclear, peripheral blood, human
Species: human
Tissue Origin: blood
Abstract
Neoangiogenesis is a key process in the initial phase of ligament healing. Adult human circulating CD34+ cells, an endothelial/hematopoietic progenitor-enriched cell population, have been reported to contribute to neoangiogenesis; however, the therapeutic potential of CD34+ cells for ligament healing is still unclear. Therefore, we performed a series of experiments to test our hypothesis that ligament healing is supported by CD34+ cells via vasculogenesis. Granulocyte colony-stimulating factor-mobilized peripheral blood (GM-PB) CD34+ cells with atelocollagen (CD34+ group), GM-PB mononuclear cells (MNCs) with atelocollagen (MNC group), or atelocollagen alone (control group) was locally transplanted after the creation of medial collateral ligament injury in immunodeficient rats. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical staining at the injury site demonstrated that molecular and histological expression of human-specific markers for endothelial cells was higher in the CD34+ group compared with the other groups at week 1. Endogenous effect, assessed by capillary density and mRNA expression of vascular endothelial growth factor, was significantly higher in CD34+ cell group than the other groups. In addition to the observation that, as assessed by real-time RT-PCR, gene expression of ligament-specific marker was significantly higher in the CD34+ group than in the other groups, ligament healing assessed by macroscopic, histological, and biomechanical examination was significantly enhanced by CD34+ cell transplantation compared with the other groups. Our data strongly suggest that local transplantation of circulating human CD34+ cells may augment the ligament healing process by promoting a favorable environment through neovascularization.