Donepezil can improve ischemic muscle atrophy by activating angiomyogenic properties of satellite cells

Noguchi T, Kakinuma Y, Arikawa M, Okazaki K, Hoshino E, Iiyama T, Kubo T, Kitaoka H, Doi Y, Sato T
Source: Circ J.
Publication Date: (2014)
Issue: 78(9): 2317-24
Research Area:
Cells used in publication:
Endothelial, aortic, human (HAEC)
Species: human
Tissue Origin: aortic
BACKGROUND: Saving more limbs of patients with peripheral arterial disease (PAD) from amputation by accelerating angiogenesis in affected limbs has been anticipated for years. We hypothesized that an anti-Alzheimer drug, donepezil (DPZ), can activate angiomyogenic properties of satellite cells, myogenic progenitors, and thus be an additional pharmacological therapy against PAD.Methods and Results:In a murine hindlimb ischemia model, we investigated the angiogenic effects of a clinical dose of DPZ (0.2 mg·kg(-1)·day(-1)) and its combination with cilostazol, a platelet aggregation inhibitor and a conventional therapeutic drug against PAD. The combination therapy most effectively improved skin coldness and most effectively upregulated vascular endothelial growth factor (VEGF)-producing satellite cells in ischemic hindlimbs. Computed tomography revealed that DPZ remarkably attenuated ischemic muscle atrophy and induced super-restoration in affected hindlimbs. The in vitro study with human aortic endothelial cells showed that DPZ or its combination with cilostazol effectively upregulated the expression of pAkt, hypoxia inducible factor-1a, and VEGF protein. Likewise, in primary cultured satellite cells, DPZ, alone or in combination, upregulated the expression of VEGF, interleukin-1ß, and fibroblast growth factor 2 protein. CONCLUSIONS: The present results suggest that a clinical dosage of DPZ accelerates angiomyogenesis by directly acting on both endothelial and satellite cells. Therefore, DPZ is a potential additional choice for conventional drug therapy against PAD. (Circ J 2014; 78: 2317-2324).