Prostate-associated gene 4 (PAGE4) protects cells against stress by elevating p21 and suppressing reactive oxygen species production

Yu Zeng1,3, Dong Gao1, John J Kim1,5, Takumi Shiraishi1, Naoki Terada1, Yoshiyuki Kakehi4, Chuize Kong3, Robert H Getzenberg1, Prakash Kulkarni1,2
Source: Other
Publication Date: (2013)
Issue: 1(1): 39-52
Research Area:
Basic Research
Cells used in publication:
Epithelial, prostate (PrEC), human
Species: human
Tissue Origin: prostate
Background: It is now widely recognized that there is a strong correlation between oxidative stress and the risk of benign and malignant diseases of the prostate. Prostate-associated gene 4 (PAGE4) is a Cancer/Testis Antigen (CTA) that was previously shown to be up-regulated in prostate cancer (PCa) and symptomatic as opposed to histologic benign prostatic hyperplasia (BPH). However, its functional role in these diseases is not fully understood. Methods: The mRNA level of PAGE4 was detected in isolated cell types in PCa tissues that were obtained from 8 men with PCa. PAGE4 protein expression profile was analyzed in a prostate disease tissue microarray. PAGE4 was overexpressed by pCMV-PAGE4-GFP transfection and cell viability was determined using the WST-1 assay. Results: PAGE4 expression is highly dynamic; while its expression is very high in fetal prostate it is drastically decreased in the normal adult prostate but is up-regulated both in symptomatic BPH and PCa. However, in the diseased prostate, PAGE4 is highly expressed in the epithelial cells of Proliferative Inflammatory Atrophy (PIA) lesions alluding to a potential stress response function of PAGE4. Consistent with such a role, PAGE4 protein levels are up-regulated when prostate cancer (PCa) cell lines are treated with various stress factors including the proinflammatory cytokine TNFa. Interestingly, in cells challenged with stress there is increased translocation of the PAGE4 protein to the mitochondrion and production of reactive oxygen species is suppressed . Furthermore, p21 is elevated in a p53-independent manner in PAGE4-overexpressing cells which results in impeded cell cycle progression, attenuated stress-induced DNA damage, and decreased cell death. Conclusions: