Enhanced endothelial differentiation of adipose-derived stem cells by substrate nanotopography.

Shi Z, Neoh KG, Kang ET, Poh CK, Wang W.
Source: Other
Publication Date: (2014)
Issue: 8(1): 50-8
Research Area:
Stem Cells
Basic Research
Cells used in publication:
Adipose stem cell, human normal
Species: human
Tissue Origin: adipose
Adipose-derived stem cells (ADSCs) have great potential as a cell source for tissue engineering and regenerative medicine because they are easier to obtain, have lower donor-site morbidity and are available in larger numbers than stem cells harvested using bone marrow aspiration. Until now, little has been known about how nanotopography affects the proliferation and endothelial differentiation of ADSCs. In the present study, two nanograting substrates with a period (ridge and groove) of about 250 and 500 nm, respectively, were fabricated on quartz and their effect on ADSC fate was investigated. The results showed that proliferation of ADSCs on nanograting substrates decreased while cell attachment was not significantly affected compared to a flat substrate. Endothelial differentiation of ADSCs on both flat and nanograting substrates can be induced with vascular endothelial growth factor, as shown by immunofluorescent staining. Quantitative real-time PCR analysis showed significantly enhanced upregulation of vWF, PECAM-1 and VE-cadherin at the gene level by ADSCs on the nanograting substrates. In vitro angiogenesis assay on Matrigel showed that nanograting substrates enhanced capillary tube formation. This study highlights the beneficial influence of nanotopography on the differentiation of ADSC into endothelial cells which play an important role in vascularization.