Altered MicroRNA processing in heritable pulmonary arterial hypertension: an important role for Smad-8

Authors:
Drake KM, Zygmunt D, Mavrakis L, Harbor P, Wang L, Comhair SA, Erzurum SC, Aldred MA
In:
Source: Am J Respir Crit Care Med
Publication Date: (2011)
Issue: 184(12): 1400-8
Research Area:
Basic Research
Cells used in publication:
SMC, pul.artery (PASMC), human
Species: human
Tissue Origin: artery
Endothelial, pulmonary artery (HPAEC), human
Species: human
Tissue Origin: artery
Abstract
RATIONALE: Heritable pulmonary arterial hypertension (HPAH) is primarily caused by mutations of the bone morphogenetic protein (BMP) type-II receptor (BMPR2). Recent identification of mutations in the downstream mediator Smad-8 (gene, SMAD9) was surprising, because loss of Smad-8 function in canonical BMP signaling is largely compensated by Smad-1 and -5. We therefore hypothesized that noncanonical pathways may play an important role in PAH. OBJECTIVES: To determine whether HPAH mutations disrupt noncanonical Smad-mediated microRNA (miR) processing. METHODS: Expression of miR-21, miR-27a, and miR-100 was studied in pulmonary artery endothelial (PAEC) and pulmonary artery smooth muscle cells (PASMC) from explant lungs of patients with PAH. MEASUREMENTS AND MAIN RESULTS: SMAD9 mutation completely abrogated miR induction, whereas canonical signaling was only reduced by one-third. miR-21 levels actually decreased, suggesting that residual canonical signaling uses up or degrades existing miR-21. BMPR2 mutations also led to loss of miR induction in two of three cases. HPAH cells proliferated faster than other PAH or controls. miR-21 and miR-27a each showed antiproliferative effects in PAEC and PASMC, and PAEC growth rate after BMP treatment correlated strongly with miR-21 fold-change. Overexpression of SMAD9 corrected miR processing and reversed the hyperproliferative phenotype. CONCLUSIONS: HPAH-associated mutations engender a primary defect in noncanonical miR processing, whereas canonical BMP signaling is partially maintained. Smad-8 is essential for this miR pathway and its loss was not complemented by Smad-1 and -5; this may represent the first nonredundant role for Smad-8. Induction of miR-21 and miR-27a may be a critical component of BMP-induced growth suppression, loss of which likely contributes to vascular cell proliferation in HPAH.