Effect of endothelium mimicking self-assembled nanomatrices on cell adhesion and spreading of human endothelial cells and smooth muscle cells

Authors:
Andukuri A, Minor WP, Kushwaha M, Anderson JM, Jun HW
In:
Source: Other
Publication Date: (2010)
Issue: 6(2): 289-97
Research Area:
Basic Research
Cells used in publication:
Endothelial, umbilical vein, human (HUVEC)
Species: human
Tissue Origin: vein
SMC, aortic (AoSMC), human
Species: human
Tissue Origin: aortic
Abstract
The goal of this study is to develop unique native endothelium mimicking nanomatrices and evaluate their effects on adhesion and spreading of human umbilical vein endothelial cells (HUVECs) and aortic smooth muscle cells (AoSMCs). These nanomatrices were developed by self-assembly of peptide amphiphiles (PAs) through a solvent evaporation technique. Three PAs, one containing the Tyr-Ile-Gly-Ser-Arg (YIGSR) ligand, the second containing the Val-Ala-Pro-Gly (VAPG) ligand, and a third without cell adhesive ligands, were developed. Cell adhesion and spreading were evaluated by a PicoGreen-DNA assay and live/dead assay, respectively. Our results show that PA-YIGSR significantly enhances HUVEC adhesion (26,704 +/- 2708), spreading (84 +/- 8%), and proliferation (50 +/- 2%) compared with that of other PAs. PA-VAPG and PA-YIGSR showed significantly greater AoSMC adhesion compared with that of PA-S. PA-VAPG also showed significantly greater spreading of AoSMCs (63 +/- 11%) compared with that of other PAs. Also, all the PAs showed significantly reduced platelet adhesion compared with that of collagen I (control). These findings would facilitate the development of novel vascular grafts, heart valves, and cell-based therapies for cardiovascular diseases.