A 3D cartilage - inflammatory cell culture system for the modeling of human osteoarthritis

Authors:
Sun L, Wang X, Kaplan DL.
In:
Source: Biomaterials
Publication Date: (2011)
Issue: 32(24): 5581-9
Research Area:
Basic Research
Cells used in publication:
Chondrocyte, human (NHAC-kn)
Species: human
Tissue Origin: cartilage
Culture Media:
Experiment


Abstract

Inflammation plays a major role in the destruction of cartilage in osteoarthritis (OA), with the interaction of multiple mediators, immune cells, fibroblasts and chondrocytes. Current 2D studies in vitro with cell lines, as well as animal models, are limited in terms of providing insight into pathogenic mechanisms related to the human system. Hence, an in vitro human 3D cartilage tissue system was established to study the impact of inflammatory mediators on chondrocytes and matrices as an initial approach to emulating early stages of OA. An in vitro 3D human cartilage tissue system was established by culturing primary chondrocytes in silk protein porous scaffolds up to 21 days in static culture, with and without cytokine (IL-1ß and TNF-a) exposure or with the use of macrophage conditioned medium (MCM). To assess chondrocyte responses, transcript levels, histology and immunohistochemistry were used to assess changes in cell viability and in cartilage matrix composition, including collagen type II and aggrecan. Chondrocyte hypertrophy and apoptosis were assessed via collagen type X and caspase-3. RT-PCR revealed that the cytokines and the MCM regulated matrix-related gene expression of chondrocytes, but with different outcomes. For anabolic-encoding genes, MCM suppressed collagen type II and upregulated aggrecan. In contrast, the cytokines suppressed aggrecan formation and had no effect on collagen type II. For catabolic-encoded genes, both cytokines and MCM upregulated MMP1, MMP3, MMP13 and ADAMTS4, with cytokines preferentially upregulating MMP13 and MCM upregulating ADMTS4. MCM down-regulated ADAMTS5. In addition, MCM stimulation led to hypertrophy and apoptosis of chondrocytes, outcomes not found with the cytokine treatment group. A decrease in aggrecan content with cytokines and MCM stimulation was found, while MCM resulted in greater reduction than the cytokine treatment. The results demonstrated that OA-like features, such as changes in matrix synthesis gene expression, increase of collagense gene expression and loss of aggrecan, were initiated within this 3D chrondrocyte human tissue system upon stimulation of the cultures with cytokines and MCM. MCM was a better inducer of immune-related features of OA, because besides the features found with cytokine stimulation, the MCM treatment also initiated collagen X expression and deposition and apoptosis of chondrocytes, important features of human OA. The results obtained with this new in vitro tissue model provide an initial step towards the development of an early stage OA system to allow for more systematic study and insight into the origins and outcomes with this disease.