Type 4 cAMP phosphodiesterase (PDE4) inhibitors augment glucocorticoid-mediated apoptosis in B cell chronic lymphocytic leukemia (B-CLL) in the absence of exogenous adenylyl cyclase stimulation

Authors:
Tiwari S, Dong H, Kim EJ, Weintraub L, Epstein PM and Lerner A
In:
Source: Biochem Pharmacol
Publication Date: (2005)
Issue: 69(3): 473-483
Research Area:
Cancer Research/Cell Biology
Immunotherapy / Hematology
Cells used in publication:
B-CLL
Species: human
Tissue Origin: blood
CCRF-CEM
Species: human
Tissue Origin: blood
Platform:
Nucleofector® I/II/2b
Abstract
cAMP-mediated signaling potentiates glucocorticoid-mediated apoptosis in lymphoid cells, but an effective means by which to take advantage of this observation in the treatment of lymphoid malignancies has not been identified. The primary objective of the current study was to determine whether PDE4 inhibitors, a class of compounds in late clinical development that raise intracellular cAMP levels by inhibiting type 4 cyclic nucleotide phosphodiesterases (PDE4), increase the efficacy of glucocorticoid-mediated apoptosis in leukemic cells from patients with B cell chronic lymphocytic leukemia (B-CLL). Rolipram, a prototypic PDE4 inhibitor, synergized with glucocorticoids in inducing B-CLL but not T cell apoptosis. Rolipram also augmented glucocorticoid receptor element (GRE) transactivation in B-CLL cells. In contrast, inhibition of protein kinase A (PKA) with the cAMP antagonist Rp-8Br-cAMPS reversed both glucocorticoid-induced apoptosis and GRE transactivation. CCRF-CEM cells, a well-studied model of glucocorticoid and cAMP-induced apoptosis, differed from B-CLL cells in that stimulation of adenylyl cyclase with the diterpene forskolin was required to increase both glucocorticoid-mediated apoptosis and GRE activation, while PDE4 inhibition had no effect. Consistent with these results, inhibition of PDE4 induced cAMP elevation in B-CLL but not CCRF-CEM cells, while forskolin augmented cAMP levels in CCRF-CEM but not B-CLL cells. While rolipram treatment up-regulated PDE4B in B-CLL, forskolin treatment up-regulated PDE4D in CCRF-CEM cells. These studies suggest that PKA is required for and enhances glucocorticoid-induced apoptosis in B-CLL by modulating glucocorticoid receptor signal transduction. Clinical trials that examine whether PDE4 inhibitors enhance the efficacy of glucocorticoid-containing chemotherapy regimens in B-CLL are indicated.