Alternaria-induced release of IL-18 from damaged airway epithelial cells: an NF-?B dependent mechanism of Th2 differentiation?

Authors:
Murai H, Qi H, Choudhury B, Wild J, Dharajiya N, Vaidya S, Kalita A, Bacsi A, Corry D, Kurosky A, Brasier A, Boldogh I, Sur S.
In:
Source: PLoS ONE
Publication Date: (2012)
Issue: 7(2): e30280
Cells used in publication:
Epithelial, bronchial (NHBE), human
Species: human
Tissue Origin: lung
Experiment


Abstract

BACKGROUND: A series of epidemiologic studies have identified the fungus Alternaria as a major risk factor for asthma. The airway epithelium plays a critical role in the pathogenesis of allergic asthma. These reports suggest that activated airway epithelial cells can produce cytokines such as IL-25, TSLP and IL-33 that induce Th2 phenotype. However the epithelium-derived products that mediate the pro-asthma effects of Alternaria are not well characterized. We hypothesized that exposure of the airway epithelium to Alternaria releasing cytokines that can induce Th2 differentiation. METHODOLOGY/PRINCIPAL FINDING: We used ELISA to measure human and mouse cytokines. Alternaria extract (ALT-E) induced rapid release of IL-18, but not IL-4, IL-9, IL-13, IL-25, IL-33, or TSLP from cultured normal human bronchial epithelial cells; and in the BAL fluids of naïve mice after challenge with ALT-E. Both microscopic and FACS indicated that this release was associated with necrosis of epithelial cells. ALT-E induced much greater IL-18 release compared to 19 major outdoor allergens. Culture of naïve CD4 cells with rmIL-18 induced Th2 differentiation in the absence of IL-4 and STAT6, and this effect was abrogated by disrupting NF- ?B p50 or with a NEMO binding peptide inhibitor. CONCLUSION/SIGNIFICANCE: Rapid and specific release of IL-18 from Alternaria-exposed damaged airway epithelial cells can directly initiate Th2 differentiation of naïve CD4(+) T-cells via a unique NF-?B dependent pathway.