Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib

Authors:
Podar K, Shringarpure R, Tai YT, Simoncini M, Sattler M, Ishitsuka K, Richardson PG, Hideshima T, Chauhan D and Anderson KC
In:
Source: Cancer Res
Publication Date: (2004)
Issue: 64(20): 7500-7506
Cells used in publication:
MM.1S
Species: human
Tissue Origin: blood
Abstract
We recently demonstrated that caveolae, vesicular flask-shaped invaginations of the plasma membrane, represent novel therapeutic targets in multiple myeloma. In the present study, we demonstrate that vascular endothelial growth factor (VEGF) triggers Src-dependent phosphorylation of caveolin-1, which is required for p130(Cas) phosphorylation and multiple myeloma cell migration. Conversely, depletion of caveolin-1 by antisense methodology abrogates p130(Cas) phosphorylation and VEGF-triggered multiple myeloma cell migration. The proteasome inhibitor bortezomib both inhibited VEGF-triggered caveolin-1 phosphorylation and markedly decreased caveolin-1 expression. Consequently, bortezomib inhibited VEGF-induced multiple myeloma cell migration. Bortezomib also decreased VEGF secretion in the bone marrow microenvironment and inhibited VEGF-triggered tyrosine phosphorylation of caveolin-1, migration, and survival in human umbilical vascular endothelial cells. Taken together, these studies demonstrate the requirement of caveolae for VEGF-triggered multiple myeloma cell migration and identify caveolin-1 in multiple myeloma cells and human umbilical vascular endothelial cells as a molecular target of bortezomib.