Cooperation of SRC-1 and p300 with NF-kappaB and CREB in angiotensin II-induced IL-6 expression in vascular smooth muscle cells

Sahar S, Reddy MA, Wong C, Meng L, Wang M, Natarajan R
Source: Arterioscler Thromb Vasc Biol
Publication Date: (2007)
Issue: 27(7): 1528-34
Research Area:
Cells used in publication:
Aortic Smooth Muscle Cells (R-ASM), Rat
Species: rat
Tissue Origin: aortic
SMC, vascular, rat
Species: rat
Tissue Origin:
OBJECTIVE: The purpose of this study was to evaluate the role of coactivator histone acetyltransferases (HATs) p300 and SRC-1 in angiotensin II (Ang II)-induced interleukin-6 (IL-6) gene expression in vascular smooth muscle cells (VSMCs). METHODS AND RESULTS: Ang II increased IL-6 mRNA expression via NF-kappaB and CREB in an extracellular signal-regulated kinase (ERK)-dependent manner in rat VSMCs. It was also significantly enhanced by the histone deacetylase inhibitor, Trichostatin A. Chromatin immunoprecipitation (ChIP) assays showed that Ang II increased Histone H3 Lysine (K9/14) acetylation on the IL-6 promoter. Ang II-induced IL-6 promoter transactivation was significantly enhanced by p300 and SRC-1, with maximal activation in cells cotransfected with NF-kappaB (p65) and SRC-1. Nucleofection of VSMCs with either an ERK phosphorylation site mutant of SRC-1 or p300/CBP HAT deficient mutants significantly blocked Ang II-induced IL-6 expression. ChIP assays revealed that Ang II enhanced coordinate occupancy of p65, CREB, p300, and SRC-1 at the IL-6 promoter. An ERK pathway inhibitor blocked Ang-induced IL-6 promoter SRC-1 occupancy and histone acetylation. CONCLUSIONS: Ang II-induced IL-6 expression requires NF-kappaB and CREB as well as ERK-dependent histone acetylation mediated by p300 and SRC-1. These results provide new insights into nuclear chromatin mechanisms by which Ang II regulates inflammatory gene expression.