Female Inheritance of Malarial lap Genes Is Essential for Mosquito Transmission

Authors:
Raine JD, Ecker A, Mendoza J, Tewari R, Stanway RR, Sinden RE
In:
Source: PLoS Pathog
Publication Date: (2007)
Issue: 3(3): e30
Research Area:
Parasitology
Cells used in publication:
Plasmodium berghei
Species: unicellular
Tissue Origin:
Platform:
Nucleofector® I/II/2b
Abstract
Members of the LCCL/lectin adhesive-like protein (LAP) family, a family of six putative secreted proteins with predicted adhesive extracellular domains, have all been detected in the sexual and sporogonic stages of Plasmodium and have previously been predicted to play a role in parasite-mosquito interactions and/or immunomodulation. In this study we have investigated the function of PbLAP1, 2, 4, and 6. Through phenotypic analysis of Plasmodium berghei loss-of-function mutants, we have demonstrated that PbLAP2, 4, and 6, as previously shown for PbLAP1, are critical for oocyst maturation and sporozoite formation, and essential for transmission from mosquitoes to mice. Sporozoite formation was rescued by a genetic cross with wild-type parasites, which results in the production of heterokaryotic polyploid ookinetes and oocysts, and ultimately infective Deltapblap sporozoites, but not if the individual Deltapblap parasite lines were crossed amongst each other. Genetic crosses with female-deficient (Deltapbs47) and male-deficient (Deltapbs48/45) parasites show that the lethal phenotype is only rescued when the wild-type pblap gene is inherited from a female gametocyte, thus explaining the failure to rescue in the crosses between different Deltapblap parasite lines. We conclude that the functions of PbLAPs1, 2, 4, and 6 are critical prior to the expression of the male-derived gene after microgametogenesis, fertilization, and meiosis, possibly in the gametocyte-to-ookinete period of differentiation. The phenotypes detectable by cytological methods in the oocyst some 10 d after the critical period of activity suggests key roles of the LAPs or LAP-dependent processes in the regulation of the cell cycle, possibly in the regulation of cytoplasm-to-nuclear ratio, and, importantly, in the events of cytokinesis at sporozoite formation. This phenotype is not seen in the other dividing forms of the mutant parasite lines in the liver and blood stages.