Histidine Phosphorylation of the Potassium Channel KCa3.1 by Nucleoside Diphosphate Kinase B Is Required for Activation of KCa3.1 and CD4 T Cells

Srivastava S, Li Z, Ko K, Choudhury P, Albaqumi M, Johnson AK, Yan Y, Backer JM, Unutmaz D, Coetzee WA, Skolnik EY
Source: Mol Cell
Publication Date: (2006)
Issue: 24(5): 665-75
Research Area:
Immunotherapy / Hematology
Cells used in publication:
T cell, human peripheral blood unstim.
Species: human
Tissue Origin: blood
T cell, human stim.
Species: human
Tissue Origin: blood
Nucleofector® I/II/2b
The Ca(2+)-activated K(+) channel KCa3.1 is required for Ca(2+) influx and the subsequent activation of B and T cells. Inhibitors of KCa3.1 are in development to treat autoimmune diseases and transplant rejection, underscoring the importance in understanding how these channels are regulated. We show that nucleoside diphosphate kinase B (NDPK-B), a mammalian histidine kinase, functions downstream of PI(3)P to activate KCa3.1. NDPK-B directly binds and activates KCa3.1 by phosphorylating histidine 358 in the carboxyl terminus of KCa3.1. Endogenous NDPK-B is also critical for KCa3.1 channel activity and the subsequent activation of CD4 T cells. These findings provide one of the best examples whereby histidine phosphorylation regulates a biological process in mammals, and provide an example whereby a channel is regulated by histidine phosphorylation. The critical role for NDPK-B in the reactivation of CD4 T cells indicates that understanding NDPK-B regulation should uncover novel pathways required for T cell activation.