LRRTM3 promotes processing of amyloid-precursor protein by BACE1 and is a positional candidate gene for late-onset Alzheimer's disease

Majercak J, Ray WJ, Espeseth A, Simon A, Shi XP, Wolffe C, Getty K, Marine S, Stec E, Ferrer M, Strulovici B, Bartz S, Gates A, Xu M, Huang Q, Ma L, Shughrue P, Burchard J, Colussi D, Pietrak B, Kahana J, Beher D, Rosahl T, Shearman M, Hazuda D, Sachs AB, Koblan KS, Seabrook GR, Stone DJ
Source: Proc Natl Acad Sci USA
Publication Date: (2006)
Issue: 103(47): 17967-17972
Research Area:
Cells used in publication:
Species: human
Tissue Origin: brain
Nucleofector® I/II/2b
Rare familial forms of Alzheimer's disease (AD) are thought to be caused by elevated proteolytic production of the Abeta42 peptide from the beta-amyloid-precursor protein (APP). Although the pathogenesis of the more common late-onset AD (LOAD) is not understood, BACE1, the protease that cleaves APP to generate the N terminus of Abeta42, is more active in patients with LOAD, suggesting that increased amyloid production processing might also contribute to the sporadic disease. Using high-throughput siRNA screening technology, we assessed 15,200 genes for their role in Abeta42 secretion and identified leucine-rich repeat transmembrane 3 (LRRTM3) as a neuronal gene that promotes APP processing by BACE1. siRNAs targeting LRRTM3 inhibit the secretion of Abeta40, Abeta42, and sAPPbeta, the N-terminal APP fragment produced by BACE1 cleavage, from cultured cells and primary neurons by up to 60%, whereas overexpression increases Abeta secretion. LRRTM3 is expressed nearly exclusively in the nervous system, including regions affected during AD, such as the dentate gyrus. Furthermore, LRRTM3 maps to a region of chromosome 10 linked to both LOAD and elevated plasma Abeta42, and is structurally similar to a family of neuronal receptors that includes the NOGO receptor, an inhibitor of neuronal regeneration and APP processing. Thus, LRRTM3 is a functional and positional candidate gene for AD, and, given its receptor-like structure and restricted expression, a potential therapeutic target.