Legionella pneumophila, a Gram-negative facultative intracellular bacterium, causes severe pneumonia (Legionnaires' disease). Type I interferons (IFNs) were so far associated with antiviral immunity, but recent studies also indicated a role of these cytokines in immune responses against (intracellular) bacteria. Here we show that wild-type L. pneumophila and flagellin-deficient Legionella, but not L. pneumophila lacking a functional type IV secretion system Dot/Icm, or heat-inactivated Legionella induced IFNbeta expression in human lung epithelial cells. We found that factor (IRF)-3 and NF-kappaB-p65 translocated into the nucleus and bound to the IFNbeta gene enhancer after L. pneumophila infection of lung epithelial cells. RNA interference demonstrated that in addition to IRF3, the caspase recruitment domain (CARD)-containing adapter molecule IPS-1 (interferon-beta promoter stimulator 1) is crucial for L. pneumophila-induced IFNbeta expression, whereas other CARD-possessing molecules, such as RIG-I (retinoic acid-inducible protein I), MDA5 (melanoma differentiation-associated gene 5), Nod27 (nucleotide-binding oligomerization domain protein 27), and ASC (apoptosis-associated speck-like protein containing a CARD) seemed not to be involved. Finally, bacterial multiplication assays in small interfering RNA-treated cells indicated that IPS-1, IRF3, and IFNbeta were essential for the control of intracellular replication of L. pneumophila in lung epithelial cells. In conclusion, we demonstrated a critical role of IPS-1, IRF3, and IFNbeta in Legionella infection of lung epithelium.