The Role of the NADPH Oxidase Complex, p38 MAPK and Akt in Regulating Human Monocyte/Macrophage Survival

Authors:
Wang Y, Zeigler MM, Lam GK, Hunter MG, Eubank TD, Khramtsov VV, Tridandapani SV, Sen CK, Marsh CB
In:
Source: Am J Respir Cell Mol Biol
Publication Date: (2007)
Issue: 36(1): 68-77
Research Area:
Immunotherapy / Hematology
Cells used in publication:
Monocyte, human
Species: human
Tissue Origin: blood
Platform:
Nucleofector® I/II/2b
Abstract
The Role of the NADPH Oxidase Complex, p38 MAPK, and Akt in Regulating Human Monocyte/Macrophage Survival. Wang Y, Zeigler MM, Lam GK, Hunter MM-CSF induces PI 3-kinase activation, resulting in reactive oxygen species (ROS) production. Previously, we reported that ROS mediate macrophage colony-stimulating factor (M-CSF)-induced extracellular regulated kinase (Erk) activation and monocyte survival. In this work, we hypothesized that M-CSF-stimulated ROS products modulated Akt1 and p38 activation. Furthermore, we sought to clarify the source of these ROS and the role of ROS and Akt in monocyte/macrophage survival. Macrophages from p47(phox-/-) mice, lacking a key component of the NADPH oxidase complex required for ROS generation, had reduced cell survival and Akt1 and p38 mitogen-activated protein kinase (MAPK) phosphorylation compared with wild-type macrophages in response to M-CSF stimulation, but had no difference in M-CSF-stimulated Erk. To understand how ROS affected monocyte survival and signaling, we observed that NAC and DPI decreased cell survival and Akt1 and p38 MAPK phosphorylation. Using bone marrow-derived macrophages from mice expressing constitutively activated Akt1 (Myr-Akt1) or transfecting Myr-Akt1 constructs into human peripheral monocytes, we concluded that Akt is a positive regulator of monocyte survival. Moreover, the p38 MAPK inhibitor, SB203580, inhibited p38 activity and M-CSF-induced monocyte survival. These findings demonstrate that ROS generated from the NADPH oxidase complex contribute to monocyte/macrophage survival induced by M-CSF via regulation of Akt and p38 MAPK.