HTLV-1 Infection of Human Retinal Pigment Epithelial Cells and Inhibition of Viral Infection by an Antibody to ICAM-1

Authors:
Liu B, Li Z, Mahesh SP, Kurup SK, Giam CZ, Nussenblatt RB
In:
Source: Invest Ophthalmol Vis Sci
Publication Date: (2006)
Issue: 47(4): 1510-5
Cells used in publication:
ARPE-19
Species: human
Tissue Origin: eye
Platform:
Nucleofector® I/II/2b
Abstract
PURPOSE: To examine whether human T-cell leukemia virus type 1 (HTLV-1) could infect a human retinal pigment epithelial (RPE) cell line, ARPE-19, in vitro and to investigate its regulation. METHODS: A coculture system with ARPE-19 and irradiated cells of an HTLV-1-producing T-cell line, MT2 was used to determine the permissivity of RPE to HTLV-1 infection in vitro. The susceptibility to HTLV-1 was assessed by detection of viral DNA using the polymerase chain reaction (PCR), viral mRNA transcripts with reverse transcription PCR (RT-PCR) and viral antigen by immunofluorescence staining. An HTLV-1 Tax-activated HTLV-LTR-luciferase reporter assay was developed to measure viral infection quantitatively. The ICAM-1 expression on cocultured ARPE-19 cells was detected by flow cytometry and an ICAM-1-neutralizing antibody was used to test ICAM-1's role in the HTLV-1 infection of ARPE-19 cells. The regulation of HTLV-1 infection was investigated by culturing ARPE-19 cells with proinflammatory cytokines. RESULTS: HTLV-1 infected ARPE-19 cells in vitro. The infection correlated with elevated expression of intercellular adhesion molecule (ICAM)-1 on the surface of ARPE-19 cells. ICAM-1-neutralizing antibody dramatically inhibited viral infection. Furthermore, proinflammatory cytokines dramatically suppressed HTLV-1 viral infection. CONCLUSIONS: The tropism of HTLV-1 to retinal pigment epithelium could provide an explanation for the pathogenesis of HTLV-1-related ophthalmic diseases. A better understanding of specific roles of proinflammatory cytokines in the development of ophthalmic diseases may be beneficial for treatment.