Nuclear factor-kappaB dimer exchange promotes a p21(waf1/cip1) superinduction response in human T leukemic cells

Authors:
Chang PY, Miyamoto S
In:
Source: Mol Cancer Res
Publication Date: (2006)
Issue: 4(2): 101-12
Research Area:
Cancer Research/Cell Biology
Immunotherapy / Hematology
Platform:
Nucleofector® I/II/2b
Abstract
The nuclear factor-kappaB (NF-kappaB)/Rel transcription factors are recognized as critical apoptosis regulators. We reported previously that NF-kappaB contributes to chemoresistance of CEM human T leukemic cells in part through its ability to induce p21(waf1/cip1). Here, we provide evidence that sequential NF-kappaB-activating signals induce heightened NF-kappaB DNA binding and p21(waf1/cip1) induction in CEM and additional T leukemic cell lines. This response arises from exceedingly low basal expression of the p105/p50 NF-kappaB subunit encoded by the NFKB1 gene in these cell lines. An initial NF-kappaB activation event enhances the recruitment of p65 and ELF1 to the NFKB1 promoter, leading to p65- and ELF1-dependent synthesis of p105/p50, which promotes an exchange of NF-kappaB complexes to p50-containing complexes with an increased DNA-binding activity to certain NF-kappaB target elements. Subsequent stimulation of these cells with an anticancer agent, etoposide, results in augmented NF-kappaB-dependent p21(waf1/cip1) induction and increased chemoresistance of the leukemia cells. Thus, we propose that low basal NFKB1 expression coupled with sequential NF-kappaB activation events can promote increased chemoresistance in certain T leukemic cells.