Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility

Authors:
Kholmanskikh SS, Koeller HB, Wynshaw-Boris A, Gomez T, Letourneau PC, Ross ME
In:
Source: Nat Neurosci
Publication Date: (2006)
Issue: 9(1): 50-7
Research Area:
Neurobiology
Cells used in publication:
Neuron, hippocampal, mouse
Species: mouse
Tissue Origin: brain
Platform:
Nucleofector® I/II/2b
Abstract
Lis1 gene defects impair neuronal migration, causing the severe human brain malformation lissencephaly. Although much is known about its interactions with microtubules, microtubule-binding proteins such as CLIP-170, and with the dynein motor complex, the response of Lis1 to neuronal motility signals has not been elucidated. Lis1 deficiency is associated with deregulation of the Rho-family GTPases Cdc42, Rac1 and RhoA, and ensuing actin cytoskeletal defects, but the link between Lis1 and Rho GTPases remains unclear. We report here that calcium influx enhances neuronal motility through Lis1-dependent regulation of Rho GTPases. Lis1 promotes Cdc42 activation through interaction with the calcium sensitive GTPase scaffolding protein IQGAP1, maintaining the perimembrane localization of IQGAP1 and CLIP170 and thereby tethering microtubule ends to the cortical actin cytoskeleton. Lis1 thus is a key component of neuronal motility signal transduction that regulates the cytoskeleton by complexing with IQGAP1, active Cdc42 and CLIP-170 upon calcium influx.