Differential cell adhesion of breast cancer stem cells on biomaterial substrate with nanotopographical cues.

Tan KK, Giam CS, Leow MY, Chan CW, Yim EK1
Source: J Funct Biomater
Publication Date: (2015)
Issue: 6(2): 241-258
Research Area:
Cancer Research/Cell Biology
Basic Research
Cells used in publication:
Species: human
Tissue Origin:
Cancer stem cells are speculated to have the capability of self-renewal and re-establishment of tumor heterogeneity, possibly involved in the potential relapse of cancer. CD44+CD24-/lowESA+ cells have been reported to possess tumorigenic properties, and these biomarkers are thought to be highly expressed in breast cancer stem cells. Cell behavior can be influenced by biomolecular and topographical cues in the natural microenvironment. We hypothesized that different cell populations in breast cancer tissue exhibit different adhesion characteristics on substrates with nanotopography. Adhesion characterizations were performed using human mammary epithelial cells (HMEC), breast cancer cell line MCF7 and primary invasive ductal carcinoma (IDC) cells obtained from patients' samples, on micro- and nano-patterned poly-L-lactic acid (PLLA) films. Topography demonstrated a significant effect on cell adhesion, and the effect was cell type dependent. Cells showed elongation morphology on gratings. The CD44+CD24-/lowESA+ subpopulation in MCF7 and IDC cells showed preferential adhesion on 350-nm gratings. Flow cytometry analysis showed that 350-nm gratings captured a significantly higher percentage of CD44+CD24- in MCF7. A slightly higher percentage of CD44+CD24-/lowESA+ was captured on the 350-nm gratings, although no significant difference was observed in the CD44+CD24-ESA+ in IDC cells across patterns. Taken together, the study demonstrated that the cancer stem cell subpopulation could be enriched using different nanopatterns. The enriched population could subsequently aid in the isolation and characterization of cancer stem cells.