Regulatory effects of fibroblast growth factor-8 and tumor necrosis factor-a on osteoblast marker expression induced by bone morphogenetic protein-2.

Katsuyama T, Otsuka F, Terasaka T, Inagaki K, Takano-Narazaki M, Matsumoto Y, Sada KE, Makino H.
Source: Peptides
Publication Date: (2015)
Issue: 73: 88-94
Research Area:
Basic Research
Cells used in publication:
Osteoblast, rat
Species: rat
Tissue Origin: bone marrow
BMP induces osteoblast differentiation, whereas a key proinflammatory cytokine, TNF-a, causes inflammatory bone damage shown in rheumatoid arthritis. FGF molecules are known to be involved in bone homeostasis. However, the effects of FGF-8 on osteoblast differentiation and the interaction between FGF-8, BMPs and TNF-a have yet to be clarified. Here we investigated the effects of FGF-8 in relation to TNF-a actions on BMP-2-induced osteoblast marker expression using myoblast cell line C2C12, osteoblast precursor cell line MC3T3-E1 and rat calvarial osteoblasts. It was revealed that FGF-8 inhibited BMP-2-induced expression of osteoblast differentiation markers, including Runx2, osteocalcin, alkaline phosphatase, type-1 collagen and osterix, in a concentration-dependent manner. The inhibitory effects of FGF-8 on BMP-induced osteoblast differentiation and Smad1/5/8 activation were enhanced in the presence of TNF-a action. FGF-8 also inhibited BMP-2-induced expression of Wnt5a, which activates a non-canonical Wnt signaling pathway. FGF-8 had no significant influence on the expression levels of TNF receptors, while FGF-8 suppressed the expression of inhibitory Smad6 and Smad7, suggesting a possible feedback activity through FGF to BMP receptor (BMPR) signaling. Of note, inhibition of ERK activity and FGF receptor (FGFR)-dependent protein kinase, but not JNK or NF?B pathway, suppressed the FGF-8 actions on BMP-induced osteoblast differentiation. FGF-8 was revealed to suppress BMP-induced osteoblast differentiation through the ERK pathway and the effects were enhanced by TNF-a. Given the finding that FGF-8 expression was increased in synovial tissues of rheumatoid arthritis, the functional interaction between FGFR and BMPR signaling may be involved in the development process of inflammatory bone damage.