Human Immunodeficiency Virus Reactivation by Phorbol Esters or T-Cell Receptor Ligation Requires both PKC and PKC

Trushin SA, Bren GD, Asin S, Pennington KN, Paya CV and Badley AD
Source: J Virol
Publication Date: (2005)
Issue: 79(15): 9821-9830
Research Area:
Immunotherapy / Hematology
Cells used in publication:
T cell, human peripheral blood unstim.
Species: human
Tissue Origin: blood
Nucleofector® I/II/2b
Latently human immunodeficiency virus (HIV)-infected memory CD4(+) T cells represent the major obstacle to eradicating HIV from infected patients. Antigens, T-cell receptor (TCR) ligation, and phorbol esters can reactivate HIV from latency in a protein kinase C (PKC)-dependent manner; however, it is unknown which specific PKC isoforms are required for this effect. We demonstrate that constitutively active (CA) forms of both PKCtheta, PKCthetaA148E, and PKCalpha, PKCalphaA25E, induce HIV long terminal repeat (LTR)-dependent transcription in Jurkat and primary human CD4(+) T cells and that both PKCthetaA148E and PKCalphaA25E cause HIV reactivation in J1.1 T cells. Suppression of both PKCalpha and PKCtheta with short hairpinned (sh) RNA inhibited CD3/CD28-induced HIV LTR-dependent transcription and HIV reactivation in J1.1 T cells. Both prostratin and phorbol myristate 13-acetate induced HIV LTR-dependent transcription and HIV reactivation in J1.1 T cells that was blocked by shRNA against either PKCalpha or PKCtheta. Since suppression of PKCalpha and PKCtheta together has no greater inhibitory effect on HIV reactivation than inhibition of PKCalpha alone, our data confirm that PKCalpha and PKCtheta act in sequence. The requirement for PKCalpha and PKCtheta for prostratin-induced HIV reactivation and the ability of selective PKCalpha or PKCtheta agonists to induce HIV transcription indicate that these PKC isoforms are important targets for therapeutic drug design.