Tylophorine, a phenanthraindolizidine alkaloid isolated from Tylophora indica exerts antiangiogenic and antitumor activity by targeting vascular endothelial growth factor receptor 2-mediated angiogenesis

Saraswati S, Kanaujia PK, Kumar S, Kumar R, Alhaider AA
Source: Mol Cancer
Publication Date: (2013)
Issue: 12: 82
Research Area:
Cancer Research/Cell Biology
Cells used in publication:
Endothelial, umbilical vein, human (HUVEC)
Species: human
Tissue Origin: vein
BACKGROUND: Anti-angiogenesis targeting VEGFR2 has been considered as an important strategy for cancer therapy. Tylophorine is known to possess anti-inflammatory and antitumor activity, but its roles in tumor angiogenesis, the key step involved in tumor growth and metastasis, and the involved molecular mechanism is still unknown. Therefore, we examined its anti-angiogenic effects and mechanisms in vitro and in vivo. METHODS: We used tylophorine and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVEC) in vitro and Ehrlich ascites carcinoma (EAC) tumor in vivo. RESULTS: Tylophorine significantly inhibited a series of VEGF-induced angiogenesis processes including proliferation, migration, and tube formation of endothelial cells. Besides, it directly inhibited VEGFR2 tyrosine kinase activity and its downstream signaling pathways including Akt, Erk and ROS in endothelial cells. Using HUVECs we demonstrated that tylophorine inhibited VEGF-stimulated inflammatory responses including IL-6, IL-8, TNF-a, IFN-?, MMP-2 and NO secretion. Tylophorine significantly inhibited neovascularization in sponge implant angiogenesis assay and also inhibited tumor angiogenesis and tumor growth in vivo. Molecular docking simulation indicated that tylophorine could form hydrogen bonds and aromatic interactions within the ATP-binding region of the VEGFR2 kinase unit. CONCLUSION: Tylophorine exerts anti-angiogenesis effects via VEGFR2 signaling pathway thus, may be a viable drug candidate in anti-angiogenesis and anti-cancer therapies.