Inter-cellular exchange of cellular components via VE-cadherin-dependent trans-endocytosis

Authors:
Sakurai T, Woolls MJ, Jin SW, Murakami M, Simons M
In:
Source: PLoS ONE
Publication Date: (2014)
Issue: 9(6): e90736
Research Area:
Basic Research
Cells used in publication:
Endothelial, umbilical vein, human (HUVEC)
Species: human
Tissue Origin: vein
Abstract
Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature.