CD40 induces anti-Toxoplasma gondii activity in nonhematopoietic cells dependent on autophagy proteins

Authors:
Van Grol J, Muniz-Feliciano L, Portillo JA, Bonilha VL, Subauste CS
In:
Source: Infect Immun
Publication Date: (2013)
Issue: 81(6): 2002-11
Research Area:
Immunotherapy / Hematology
Cells used in publication:
Endothelial, umbilical vein, human (HUVEC)
Species: human
Tissue Origin: vein
Experiment


Abstract

Toxoplasma gondii infects both hematopoietic and nonhematopoietic cells and can cause cerebral and ocular toxoplasmosis, as a result of either congenital or postnatally acquired infections. Host protection likely acts at both cellular levels to control the parasite. CD40 is a key factor for protection against cerebral and ocular toxoplasmosis. We determined if CD40 induces anti-T. gondii activity at the level of nonhematopoietic cells. Engagement of CD40 on various endothelial cells including human microvascular brain endothelial cells, human umbilical vein endothelial cells, and a mouse endothelial cell line as well as human and mouse retinal pigment epithelial cells resulted in killing of T. gondii. CD40 stimulation increased expression of the autophagy proteins Beclin 1 and LC3 II, enhanced autophagy flux, and led to recruitment of LC3 around the parasite. The late endosomal/lysosomal marker LAMP-1 accumulated around the parasite in CD40-stimulated cells. This was accompanied by killing of T. gondii dependent on lysosomal enzymes. Accumulation of LAMP-1 and killing of T. gondii were dependent on the autophagy proteins Beclin 1 and Atg7. Together, these studies revealed that CD40 induces toxoplasmacidal activity in various nonhematopoietic cells dependent on proteins of the autophagy machinery.