During pregnancy, trophoblasts enter the uterine vasculature and are found in spiral arteries far upstream of uterine capillaries. It is unknown whether trophoblasts reach the spiral arteries by migration within blood vessels against blood flow or by intravasation directly into spiral arteries after interstitial migration. We have developed an in vitro system consisting of early gestation macaque monkey trophoblasts cocultured with uterine endothelial cells and have exposed the cells in a parallel plate flow chamber to physiological levels of shear stress. Videomicroscopy followed by quantitative image analysis revealed that the migratory activity (expressed as average displacement and average migration velocity) of trophoblasts cultured on top of endothelial cells remained unchanged between shear stresses of 1-30 dyne/cm(2) whereas activity of trophoblasts alone increased with increasing shear stress. When the direction of migration was assessed at 1 and 7.5 dyne/cm(2), the extent of migration against and with flow was roughly equal for both trophoblasts alone and cocultured trophoblasts. At shear stress levels of 15 and 30 dyne/cm(2), trophoblasts incubated alone showed a significant decrease in migration against flow and corresponding increased migration in the direction of flow. In contrast, trophoblasts cocultured with uterine endothelial cells maintained the same extent of migration against flow at all shear stress levels. Migration against flow was also maintained when trophoblasts were cultured with endothelial cell-conditioned medium or fixed endothelial cells. The results indicate that factors expressed on the surface of uterine endothelial cells and factors released by endothelial regulate trophoblast migration under flow.