Human Platelet Lysates Successfully Replace Fetal Bovine Serum in Adipose-Derived Adult Stem Cell Culture

Authors:
Rauch C, Wechselberger J, Feifel E, Gstraunthaler G
In:
Source: Other
Publication Date: (2014)
Issue: 2(1): 1-11
Research Area:
Stem Cells
Basic Research
Cells used in publication:
Adipose stem cell, human normal
Species: human
Tissue Origin: adipose
Experiment


Abstract

Fetal bovine serum (FBS) is still the gold standard as a cell culture medium additive due to its high level of growth stimulatory factors. Although supplementation of growth media with FBS is common practice in cell and tissue culture, FBS bears a number of disadvantages and its use has been questioned recently: (1) an ill-defined medium supplement, (2) qualitative and quantitative batch-to-batch variations, and (3) animal welfare concerns regarding the harvest of bovine fetal blood. Recently, we were able to show the capacity of human platelet a-granule lysates to replace FBS in a variety of human and animal cell culture systems. Thus, lysates of human donor platelets may become a valuable non animal-derived substitute for FBS in cultures of mammalian cells and in human and animal stem cell technology. Stem cells may become the future for human-based alternative to animal testing, in vitro toxicology, and drug safety assessment. New stem cell-based test systems are continuously established, and their performance under animal-derived component free culture conditions has to be defined in prevalidation and validation studies. In order to accomplish these tasks, adipose-derived mesenchymal stem cells (ADSC) were expanded in media supplemented with platelet lysates. Proliferation assays by resazurin and WST-8 compared with direct cell counting confirmed the growth promoting effect of platelet lysate, comparable to high FBS. Furthermore, we established culture conditions that ADSC kept their undifferentiated state as determined by CD73, CD90 and CD105 expression and the lack of negative marker CD45. Preliminary tests whether ADSC can be differentiated towards adipogenic, osteogenic, or chondrogenic phenotypes under platelet lysate supplemented growth conditions were also successful.