Differential regulation and role of interleukin-1 receptor associated kinase-M in innate immunity signaling

Authors:
Su J, Xie Q, Wilson I, Li L
In:
Source: Cell Signal
Publication Date: (2007)
Issue: 19(7): 1596-601
Research Area:
Immunotherapy / Hematology
Cells used in publication:
THP-1
Species: human
Tissue Origin: blood
Platform:
Nucleofector® I/II/2b
Abstract
Toll-like-receptor mediated signaling is finely regulated by a complex intracellular protein network including the interleukin-1 receptor associate kinases (IRAKs). IRAK-4, 1, and 2 may positively regulate innate immunity signaling through the activation of various downstream kinases such as MAPKs. In contrast, IRAK-M plays an inhibitory role through unknown mechanism. In this report, we show that IRAK-M is ubiquitously present in the cell, and becomes exclusively cytoplasmic upon bacterial lipoprotein Pam(3)CSK(4) challenge. Furthermore, using bone marrow derived macrophages (BMDM) from wild type, IRAK1(-/-), and IRAK-M(-/-) mice, we have herein demonstrated that IRAK-M selectively attenuates bacterial lipopeptide Pam(3)CSK(4)-induced p38 activation, but not ERK or JNK. IRAK1(-/-) and IRAK-M(-/-)BMDM display distinct activation profile of various MAP kinases upon Pam(3)CSK(4) challenge, indicating that IRAK-M exerts its inhibitory effect through an IRAK1 independent pathway. Pam(3)CSK(4) challenge leads to rapid decrease of MKP-1 protein level in IRAK-M(-/-)BMDM as well as THP-1 cells with decreased IRAK-M expression through siRNA interference. Our findings indicate that IRAK-M selectively attenuates p38 activation and inhibits innate immunity through stabilizing MKP-1.