The neutrophil plays a central role in the innate host immune defense. Regulated exocytosis of its granules and release of antimicrobial and cytotoxic substances are key events to limit the spread of pathogens. However, the molecular mechanisms that control exocytosis of neutrophil granules are ill-defined. Recently, it was shown that Munc13-4 is essential for the priming of granules in several hematopoietic cells. In this study, we show that Munc13-4 is expressed in human neutrophils, and that its expression is increased during granulocytic differentiation of HL-60 and PLB-985 cells. Cell fractionation analysis reveals that Munc13-4 is mainly cytosolic and is recruited rapidly to membranes following stimulation with fMLF (N-formyl-methionyl-leucyl-phenylalanine). Moreover, a pool of Munc13-4 associated with mobilizable secondary and tertiary granules is relocalized to the plasma membrane after stimulation with fMLF. The fMLF-induced translocation of Munc13-4 is strictly dependent on calcium in neutrophils. C2 domains of Munc13-4 are essential for binding to phospholipid vesicles in a Ca(2+)-independent manner. Finally, down-regulation of Munc13-4 using small interfering RNA decreases exocytosis of tertiary granules in PLB-985 cells, whereas overexpression of Munc13-4 enhances secretion of MMP-9 (matrix metalloproteinase-9) from tertiary granules. Our findings suggest a role for Munc13-4 as a component of the secretory machinery in neutrophils.