Lymphocyte Transformation by Pim-2 Is Dependent on Nuclear Factor-B Activation

Authors:
Hammerman PS, Fox CJ, Cinalli RM, Xu A, Wagner JD, Lindsten T and Thompson CB
In:
Source: Cancer Res
Publication Date: (2004)
Issue: 64(22): 8341-8348
Research Area:
Cancer Research/Cell Biology
Cells used in publication:
FL5.12A
Species: mouse
Tissue Origin: blood
Platform:
Nucleofector® I/II/2b
Abstract
Pim-2 is a transcriptionally regulated oncogenic kinase that promotes cell survival in response to a wide variety of proliferative signals. Deregulation of Pim-2 expression has been documented in several human malignancies, including leukemia, lymphoma, and multiple myeloma. Here, we show that the ability of Pim-2 to promote survival of cells is dependent on nuclear factor (NF)-kappaB activation. Pim-2 activates NF-kappaB-dependent gene expression by inducing phosphorylation of the oncogenic serine/threonine kinase Cot, leading to both augmentation of IkappaB kinase activity and a shift in nuclear NF-kappaB from predominantly p50 homodimers to p50/p65 heterodimers. Blockade of NF-kappaB function eliminates Pim-2-mediated survival in both cell lines and primary cells, and both Cot phosphorylation and expression are required for the prosurvival effects of Pim-2. Although Pim-2 cooperates with Myc to promote growth factor-independent cell proliferation, this feature is abrogated by NF-kappaB blockade. The ability of Pim-2 to serve as an oncogene in vivo depends on sustained NF-kappaB activity. Thus, the transcriptional induction of Pim-2 initiates a novel NF-kappaB activation pathway that regulates cell survival.