Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission

Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Köhler K, Oddos S, Eissmann P, Brodsky FM, Hopkins C, Onfelt B, Sattentau Q, Davis DM
Source: Nat Cell Biol
Publication Date: (2008)
Issue: 10(2): 211-9
Research Area:
Immunotherapy / Hematology
Cells used in publication:
Species: human
Tissue Origin: blood
Nucleofector™ I/II/2b
Transmission of HIV-1 via intercellular connections has been estimated as 100-1000 times more efficient than a cell-free process, perhaps in part explaining persistent viral spread in the presence of neutralizing antibodies. Such effective intercellular transfer of HIV-1 could occur through virological synapses or target-cell filopodia connected to infected cells. Here we report that membrane nanotubes, formed when T cells make contact and subsequently part, provide a new route for HIV-1 transmission. Membrane nanotubes are known to connect various cell types, including neuronal and immune cells, and allow calcium-mediated signals to spread between connected myeloid cells. However, T-cell nanotubes are distinct from open-ended membranous tethers between other cell types, as a dynamic junction persists within T-cell nanotubes or at their contact with cell bodies. We also report that an extracellular matrix scaffold allows T-cell nanotubes to adopt variably shaped contours. HIV-1 transfers to uninfected T cells through nanotubes in a receptor-dependent manner. These data lead us to propose that HIV-1 can spread using nanotubular connections formed by short-term intercellular unions in which T cells specialize.