Stimulation of c-Myc transcriptional activity by vIRF-3 of Kaposi's sarcoma-associated herpesvirus

Authors:
Lubyova B, Kellum MJ, Frisancho JA, Pitha PM
In:
Source: J Biol Chem
Publication Date: (2007)
Issue: 282(44): 31944-53
Research Area:
Immunotherapy / Hematology
Cells used in publication:
BCBL1
Species: human
Tissue Origin: blood
Platform:
Nucleofectorâ„¢ I/II/2b
Abstract
Kaposi sarcoma-associated herpesvirus is associated with two lymphoproliferative disorders, primary effusion lymphoma (PEL) and Castleman disease. In PEL, Kaposi sarcoma-associated herpesvirus is present in a latent form expressing only few viral genes. Among them is a viral homologue of cellular interferon regulatory factors, vIRF-3. To study the role of vIRF-3 in PEL lymphomagenesis, we analyzed the interaction of vIRF-3 with cellular proteins. Using yeast two-hybrid screen, we detected the association between vIRF-3 and c-Myc suppressor, MM-1alpha. The vIRF-3 and MM-1alpha interaction was also demonstrated by glutathione S-transferase pulldown assay and coimmunoprecipitation of endogenous vIRF-3 and MM-1alpha in PEL-derived cell lines. Overexpression of vIRF-3 enhanced the c-Myc-dependent transcription of the gene cdk4. Addressing the molecular mechanism of the vIRF-3-mediated stimulation, we demonstrated that the association between MM-1alpha and c-Myc was inhibited by vIRF-3. Furthermore, the recruitment of vIRF-3 to the cdk4 promoter and the elevated levels of the histone H3 acetylation suggest the direct involvement of vIRF-3 in the activation of c-Myc-mediated transcription. These findings indicate that vIRF-3 can effectively stimulate c-Myc function in PEL cells and consequently contribute to de-regulation of B-cell growth and differentiation.