Bcl-2 cleavages at two adjacent sites by different caspases promote cisplatin-induced apoptosis

Authors:
Zhu J, Yang Y, Wu J
In:
Source: Cell Res
Publication Date: (2007)
Issue: 17(5): 441-8
Research Area:
Cancer Research/Cell Biology
Platform:
Nucleofector® I/II/2b
Abstract
The protein encoded by bcl-2 proto-oncogene plays an important role in the mitochondria-mediated apoptotic pathway. Although the general role of Bcl-2 is anti-apoptotic, previous work showed that Bcl-2 fragments cleaved by caspases could promote apoptotic process. We report herein that Bcl-2 protein was cleaved to produce two fragments of around 23 kDa in human hepatocarcinoma BEL-7404 cells or in Bcl-2 overexpressing CHO cells induced by cisplatin. Treating cells with the general caspase inhibitor z-VAD-fmk blocked the induced cleavage of Bcl-2. Mutagenesis analyses showed that Bcl-2 was cleaved by caspases at two adjacent recognition sites in the loop domain (YEWD(31) decrease AGD(34) decrease V), which could be inhibited by caspase-8 and -3 inhibitors, respectively. Overexpression of the carboxyl terminal 23 kDa fragments increased the sensitivity of CHO cells to cisplatin-induced apoptosis. These results indicate that Bcl-2 can be cleaved into two close fragments by different caspases during cisplatin-induced apoptosis, both of which contribute to the acceleration of apoptotic process.