Cholesterol is required for endocytosis and endosomal escape of adenovirus type 2

Imelli N, Meier O, Boucke K, Hemmi S and Greber UF
Source: J Virol
Publication Date: (2004)
Issue: 78(6): 3089-3098
The species C adenovirus type 2 (Ad2) and Ad5 bind the coxsackievirus B Ad receptor and alphav integrin coreceptors and enter epithelial cells by clathrin-mediated endocytosis. This pathway is rapid and efficient. It leads to cell activation and the cholesterol-dependent formation of macropinosomes. Macropinosomes are triggered to release their contents when incoming Ad2 escapes from endosomes. Here, we show that cholesterol extraction of epithelial cells by methyl-beta-cyclodextrin (mbetaCD) treatment reduced Ad5-mediated luciferase expression approximately 4-fold. The addition of cholesterol to normal cells increased gene expression in a dose-dependent manner up to threefold, but it did not restore gene expression in mbetaCD-treated cells. mbetaCD had no effect in the presence of excess cholesterol, indicating that the inhibition of gene expression was due specifically to cholesterol depletion. Cholesterol depletion inhibited rapid Ad2 endocytosis, endosomal escape, and nuclear targeting, consistent with the notion that clathrin-dependent endocytosis of Ad2 is cholesterol dependent. In cholesterol-reduced cells, Ad2 internalized at a low rate, suggestive of an alternative, clathrin-independent, low-capacity entry pathway. While exogenous cholesterol completely restored rapid Ad2 endocytosis, macropinocytosis, and macropinosome disruption, it did not, surprisingly, restore viral escape from endosomes. Our results indicate that macropinosome disruption and endosomal escape of Ad2 are independent events in cells depleted of and then refilled with cholesterol, suggesting that viral escape from endosomes requires lipid-controlled membrane homeostasis, trafficking, or signaling.