Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts
Authors:
Meinecke I, Cinski A, Baier A, Peters MA, Dankbar B, Wille A, Drynda A, Mendoza H, Gay RE, Hay RT, Ink B, Gay S, Pap T
In:
Source:
Proc Natl Acad Sci USA
Publication Date:
(
2007
)
Issue:
104(12)
:
5073-8
Research Area:
Cancer Research/Cell Biology
Cells used in publication:
Fibroblast, synovial, human
Species: human
Tissue Origin:
Synoviocyte, human
Species: human
Tissue Origin:
Platform:
Nucleofector® I/II/2b
Abstract
The small ubiquitin-like modifier (SUMO)-1 is an important posttranslational regulator of different signaling pathways and involved in the formation of promyelocytic leukemia (PML) protein nuclear bodies (NBs). Overexpression of SUMO-1 has been associated with alterations in apoptosis, but the underlying mechanisms and their relevance for human diseases are not clear. Here, we show that the increased expression of SUMO-1 in rheumatoid arthritis (RA) synovial fibroblasts (SFs) contributes to the resistance of these cells against Fas-induced apoptosis through increased SUMOylation of nuclear PML protein and increased recruitment of the transcriptional repressor DAXX to PML NBs. We also show that the nuclear SUMO-protease SENP1, which is found at lower levels in RA SFs, can revert the apoptosis-inhibiting effects of SUMO-1 by releasing DAXX from PML NBs. Our findings indicate that in RA SFs overexpression of SENP1 can alter the SUMO-1-mediated recruitment of DAXX to PML NBs, thus influencing the proapoptotic effects of DAXX. Accumulation of DAXX in PML NBs by SUMO-1 may, therefore, contribute to the pathogenesis of inflammatory disorders.
Open in PubMed